Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 368
1.
Food Microbiol ; 121: 104498, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637069

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Bacillus , Laurates , Monoglycerides , Monoglycerides/pharmacology , Monoglycerides/chemistry , Acids , Lauric Acids/pharmacology , Carbon
2.
Sci Rep ; 14(1): 9270, 2024 04 23.
Article En | MEDLINE | ID: mdl-38649421

The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.


Antineoplastic Agents , Apoptosis , Chitosan , Colchicine , Colchicine/analogs & derivatives , Lauric Acids , Mouth Neoplasms , Nanogels , Polyethyleneimine , Humans , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Lauric Acids/chemistry , Lauric Acids/pharmacology , Cell Line, Tumor , Nanogels/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Colchicine/pharmacology , Apoptosis/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Molecular Docking Simulation , Cell Proliferation/drug effects , Cell Survival/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
3.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38586917

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Antineoplastic Agents , Colorectal Neoplasms , Fluorouracil , Lauric Acids , Fluorouracil/pharmacology , Fluorouracil/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Humans , Lauric Acids/chemistry , Lauric Acids/pharmacology , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fusobacterium nucleatum/drug effects , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Drug Delivery Systems , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Prodrugs/chemistry , Prodrugs/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Particle Size , Drug Carriers/chemistry
4.
Plant Signal Behav ; 19(1): 2332019, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38527068

Tobacco black shank (TBS), caused by Phytophthora nicotianae, is a severe disease. Plant root exudates play a crucial role in mediating plant-pathogen interactions in the rhizosphere. However, the specific interaction between key secondary metabolites present in root exudates and the mechanisms of disease resistance remains poorly understood. This study conducted a comprehensive comparison via quasi-targeted metabolomic analysis on the root exudate metabolites from the tobacco cultivar Yunyan87 and K326, both before and after inoculation with P. nicotianae. The results showed that the root exudate metabolites changed after P. nicotianae inoculation, and the root exudate metabolites of different tobacco cultivar was significantly different. Furthermore, homovanillic acid, lauric acid, and isoliquiritigenin were identified as potential key compounds for TBS resistance based on their impact on the mycelium growth of the pathogens. The pot experiment showed that isoliquiritigenin reduced the incidence by 55.2%, while lauric acid reduced it by 45.8%. This suggests that isoliquiritigenin and lauric acid have potential applications in the management of TBS. In summary, this study revealed the possible resistance mechanisms of differential metabolites in resistance of commercial tobacco cultivar, and for the first time discovered the inhibitory effects of isoliquiritigenin and homovanillic acid on P. nictianae, and attempt to use plants secondary metabolites of for plant protection.


Chalcones , Lauric Acids , Homovanillic Acid , Lauric Acids/pharmacology , Nicotiana
5.
Mol Nutr Food Res ; 68(2): e2300535, 2024 Jan.
Article En | MEDLINE | ID: mdl-38039428

SCOPE: Butyric acid (C4) and lauric acid (C12) are recognized as functional fatty acids, while the health benefits of the structural lipids they constitute remain unclear. METHODS AND RESULTS: In this study, lauric acid-butyric structural lipid (SLBL ) is synthesized through ultrasound-assisted enzyme-catalyzed acidolysis and its health benefits are evaluated in a high-fat diet-induced obesity mouse model. SLBL and its physical mixture (MLBL ) do not significantly inhibit obesity in mice. However, SLBL treatment increases the ratio of n3/n6 fatty acids in the liver and improves obesity-induced hepatic lipid metabolism disorders. Furthermore, the expression of liver pro-inflammatory cytokines (interleukin [IL]-6, IL-1ß, TNF-α) are significantly suppressed by SLBL , while the expression of anti-inflammatory cytokine (IL-10) is increased. Moreover, SLBL ameliorates the dysbiosis of small intestinal microbes induced by high-fat diet and regulates microbial community structure to be close to the control group. Especially, SLBL significantly alleviates the high-fat diet-induced decrease in Dubosiella and Bifidobacterium abundance. Correlation analysis reveals that SLBL treatment increases the abundance of microorganisms with potential anti-inflammatory function and decreases the abundance of potentially pathogenic bacteria. CONCLUSION: In all, small intestinal microbes may be a significant bridge for the positive anti-inflammatory effects of SLBL , while the exact mechanism remains to be clarified.


Gastrointestinal Microbiome , Animals , Mice , Inflammation/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Fatty Acids/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Lauric Acids/pharmacology , Mice, Inbred C57BL , Lipid Metabolism
6.
J Med Entomol ; 60(2): 333-338, 2023 03 06.
Article En | MEDLINE | ID: mdl-36562151

Fatty acids derived from natural oils are considered as perspective products for adoption as repellents. Fatty acids derived from coconut oil have shown promise as repellents. This study consisted of an olfactometer evaluation of new formulations containing medium-chain fatty acids for spatial repellency and an in laboratory arm-in cage study for contact repellency against Aedes aegypti L. mosquitoes. Six formulations each of capric acid and lauric acid were evaluated for spatial repellency. These formulations contained 0.28-10% of either capric acid or lauric acid as the active ingredients in a consumer friendly skin care formulation. Base formula without fatty acids was evaluated as control in spatial repellency evaluation. For the arm-in cage evaluations, six formulations of capric acid, one base formulation, and a 7% N,N-diethyl-m-toluamide (DEET) product were tested for contact repellency. For contact repellency, United States Department of Agriculture (USDA) standard repellent test cages were used to determine the complete protection time (CPT) of the different formulated repellents. Among all capric acid formulations tested, the concentration of 2.25% (wt) indicated the best level of spatial repellency, but not significantly different from other concentrations. None of the lauric acid concentrations showed any level of spatial repellency. In the arm-in-cage evaluations, the highest contact repellency resulted from 4.5% capric acid, which was significantly higher than 7% DEET and base formula.


Aedes , Insect Repellents , Animals , DEET , Fatty Acids/pharmacology , Insect Repellents/pharmacology , Decanoic Acids , Lauric Acids/pharmacology
7.
Poult Sci ; 101(10): 102101, 2022 Oct.
Article En | MEDLINE | ID: mdl-36088896

Necrotic enteritis causes economic losses estimated to be up to 6 billion US dollars per year. Clinical and subclinical infections in poultry are also both correlated with decreased growth and feed efficiency. Moreover, in a context of increased antibiotic resistance, feed additives with enhanced antimicrobial properties are a useful and increasingly needed strategy. In this study, the protective effects of a blend of thymol and organic acids against the effects of Clostridium perfringens type A (CP) on chicken intestinal epithelial cells were investigated and compared to bacitracin, a widely used antibiotic in poultry production. Primary chicken intestinal epithelial cells were challenged with CP for a total time of 3 h to assess the beneficial effect of 2 doses of citric acid, dodecanoic acid, and thymol-containing blend, and compare them with bacitracin. During the challenge, different parameters were recorded, such as transepithelial electrical resistance, cell viability, mRNA expression, and reactive oxygen species production. CP induced inflammation with cytokine production and loss of epithelial barrier integrity. It was also able to induce reactive oxygen species production and increase the caspase expression leading to cellular death. The high dose of the blend acted similarly to bacitracin, preventing the disruptive effects of CP and inducing also an increase in zonula occludens-1 mRNA expression. The low dose only partially prevented the disruptive effects of CP but successfully reduced the associated inflammation. This study shows that the usage of thymol combined with 2 organic acids can protect primary chicken intestinal epithelial cells from CP-induced damages creating a valid candidate to substitute or adjuvate the antibiotic treatment against necrotic enteritis.


Anti-Infective Agents , Clostridium Infections , Enteritis , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Bacitracin/pharmacology , Caspases , Chickens , Citric Acid/pharmacology , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium perfringens , Cytokines , Enteritis/veterinary , Epithelial Cells , Inflammation/veterinary , Lauric Acids/pharmacology , Lauric Acids/therapeutic use , Poultry , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , RNA, Messenger , Reactive Oxygen Species/therapeutic use , Thymol/pharmacology
8.
PLoS One ; 17(1): e0262427, 2022.
Article En | MEDLINE | ID: mdl-35025934

A feeding trial of eight weeks was conducted to examine the influence of food supplementation with lauric acid (LA) on Acanthopagrus schlegelii (juvenile black sea bream). A 24 percent fish meal baseline diet was created, while the other two diets were generated with dietary supplementation of graded points of LA at 0.1 percent and 0.8 percent, respectively. Each diet was given a triplicate tank with 20 fish weighing 6.22 ± 0.19 g. In comparison with the control group, the weight gain rate, growth rate, as well as feed efficiency of fish fed of 0.1 percent diet of LA were considerably (P < 0.05) greater. The total body and dorsal muscle proximate compositions did not change significantly between groups (P > 0.05). Triglyceride (TG) content was considerably (P < 0.05) greater in the LA-supplemented meals eating group in comparison with the control group. In the group eating LA-supplemented meals, the height of villus and the number of goblet cells/villus were considerably (P < 0.05) larger. The microbial makeup of the gut was also studied. The differences in phyla, class, and family level were not statistically significant (P > 0.05). Firmicutes in the phylum, Betaproteobacteri, Gammaproteobacteria, and Clostridia in the class, and Clostridiaceae in the family were all substantially increased with higher levels of LA supplementation (P < 0.05). According to the findings of this study, an LA-supplemented diet improves fish development, antioxidative capability, gut microbiota and intestinal health.


Gastrointestinal Microbiome/physiology , Lauric Acids/pharmacology , Sea Bream/growth & development , Animal Feed/analysis , Animals , Antioxidants/metabolism , Aquaculture/methods , China , Diet , Dietary Supplements , Perciformes/growth & development , Sea Bream/microbiology
9.
Microb Biotechnol ; 15(2): 590-602, 2022 02.
Article En | MEDLINE | ID: mdl-34156757

Biofilms are communities of bacteria, fungi or yeasts that form on diverse biotic or abiotic surfaces, and play important roles in pathogenesis and drug resistance. A generic saw palmetto oil inhibited biofilm formation by Staphylococcus aureus, Escherichia coli O157:H7 and fungal Candida albicans without affecting their planktonic cell growth. Two main components of the oil, lauric acid and myristic acid, are responsible for this antibiofilm activity. Their antibiofilm activities were observed in dual-species biofilms as well as three-species biofilms of S. aureus, E. coli O157:H7 and C. albicans. Transcriptomic analysis showed that lauric acid and myristic acid repressed the expressions of haemolysin genes (hla and hld) in S. aureus, several biofilm-related genes (csgAB, fimH and flhD) in E. coli and hypha cell wall gene HWP1 in C. albicans, which supported biofilm inhibition. Also, saw palmetto oil, lauric acid and myristic acid reduced virulence of three microbes in a nematode infection model and exhibited minimal cytotoxicity. Furthermore, combinatorial treatment of fatty acids and antibiotics showed synergistic antibacterial efficacy against S. aureus and E. coli O157:H7. These results demonstrate that saw palmetto oil and its main fatty acids might be useful for controlling bacterial infections as well as multispecies biofilms.


Escherichia coli O157 , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biofilms , Candida albicans , Lauric Acids/pharmacology , Myristic Acid/pharmacology , Plant Extracts , Serenoa
10.
Cells ; 10(12)2021 12 01.
Article En | MEDLINE | ID: mdl-34943896

Cardiovascular diseases (CVD) are a leading cause of mortality worldwide, and dietary habits represent a major risk factor for dyslipidemia; a hallmark of CVD. Saturated fatty acids contribute to CVD by aggravating dyslipidemia, and, in particular, lauric acid (LA) raises circulating cholesterol levels. The role of red blood cells (RBCs) in CVD is increasingly being appreciated, and eryptosis has recently been identified as a novel mechanism in CVD. However, the effect of LA on RBC physiology has not been thoroughly investigated. RBCs were isolated from heparin-anticoagulated whole blood (WB) and exposed to 50-250 µM of LA for 24 h at 37 °C. Hemoglobin was photometrically examined as an indicator of hemolysis, whereas eryptosis was assessed by Annexin V-FITC for phosphatidylserine (PS) exposure, Fluo4/AM for Ca2+, light scatter for cellular morphology, H2DCFDA for oxidative stress, and BODIPY 581/591 C11 for lipid peroxidation. WB was also examined for RBC, leukocyte, and platelet viability and indices. LA caused dose-responsive hemolysis, and Ca2+-dependent PS exposure, elevated erythrocyte sedimentation rate (ESR), cytosolic Ca2+ overload, cell shrinkage and granularity, oxidative stress, accumulation of lipid peroxides, and stimulation of casein kinase 1α (CK1α). In WB, LA disrupted leukocyte distribution with elevated neutrophil-lymphocyte ratio (NLR) due to selective toxicity to lymphocytes. In conclusion, this report provides the first evidence of the pro-eryptotic potential of LA and associated mechanisms, which informs dietary interventions aimed at CVD prevention and management.


Calcium/metabolism , Dietary Fats/pharmacology , Eryptosis/drug effects , Fatty Acids/pharmacology , Lauric Acids/pharmacology , Benzamides/pharmacology , Extracellular Space/chemistry , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hemolysis/drug effects , Homeostasis/drug effects , Humans , Imidazoles/pharmacology , Lipid Peroxidation/drug effects , Lymphocytes/drug effects , Lymphocytes/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Oxidative Stress/drug effects , Phosphatidylserines/metabolism , Protein Carbonylation/drug effects
11.
Front Immunol ; 12: 759323, 2021.
Article En | MEDLINE | ID: mdl-34721434

Lauric acid (LA) is a crucial medium-chain fatty acid (MCFA) that has many beneficial effects on humans and animals. This study aimed to investigate the effects of LA on the intestinal barrier, immune functions, serum metabolism, and gut microbiota of broilers under lipopolysaccharide (LPS) challenge. A total of 384 one-day-old broilers were randomly divided into four groups, and fed with a basal diet, or a basal diet supplemented with 75 mg/kg antibiotic (ANT), or a basal diet supplemented with 1000 mg/kg LA. After 42 days of feeding, three groups were intraperitoneally injected with 0.5 mg/kg Escherichia coli- derived LPS (LPS, ANT+LPS and LA+LPS groups) for three consecutive days, and the control (CON) group was injected with the same volume of saline. Then, the birds were sacrificed. Results showed that LA pretreatment significantly alleviated the weight loss and intestinal mucosal injuries caused by LPS challenge. LA enhanced immune functions and inhibited inflammatory responses by upregulating the concentrations of immunoglobulins (IgA, IgM, and IgY), decreasing IL-6 and increasing IL-4 and IL-10. Metabolomics analysis revealed a significant difference of serum metabolites by LA pretreatment. Twenty-seven serum metabolic biomarkers were identified and mostly belong to lipids. LA also markedly modulated the pathway for sphingolipid metabolism, suggesting its ability to regulate lipid metabolism. Moreover,16S rRNA analysis showed that LA inhibited LPS-induced gut dysbiosis by altering cecal microbial composition (reducing Escherichia-Shigella, Barnesiella and Alistipes, and increasing Lactobacillus and Bacteroides), and modulating the production of volatile fatty acids (VFAs). Pearson's correlation assays showed that alterations in serum metabolism and gut microbiota were strongly correlated to the immune factors; there were also strong correlations between serum metabolites and microbiota composition. The results highlight the potential of LA as a dietary supplement to combat bacterial LPS challenge in animal production and to promote food safety.


Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Lauric Acids/pharmacology , Animals , Chickens , Inflammation/chemically induced , Inflammation/metabolism , Intestines/drug effects , Intestines/metabolism , Lauric Acids/blood , Lauric Acids/metabolism , Lipopolysaccharides , Male , Metabolomics , Weight Loss/drug effects
12.
Chem Biol Interact ; 348: 109640, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34506767

Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.


Intestines/cytology , Lauric Acids/pharmacology , Signal Transduction/drug effects , Stem Cells/cytology , Trichothecenes/pharmacology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
13.
J Oleo Sci ; 70(9): 1239-1246, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34373405

Fatty acids and their derivatives are interesting cosmetic ingredients because they show the selective antibacterial activity against Staphylococcus aureus (S. aureus). However, the antibacterial activity in mixed systems containing several active ingredients is unclear because previous studies focused antibacterial systems containing one kind of fatty acid. In the present study, the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC) were evaluated for myristic acid/lauric acid, myristic acid/palmitoleic acid, and myristic acid/lactic acid mixed systems to show the effect of the coexisting components on the selective antibacterial activity of myristic acid. In the myristic acid/palmitoleic acid mixed system, the antibacterial activity against S. aureus was enhanced by additive effect, whereas the antibacterial activity was not observed against S. epidermidis. On the other hand, the myristic acid/lauric acid mixed system showed antibacterial activity against S. epidermidis: Lauric acid impaired the selectivity of antibacterial activity of myristic acid. These results suggest that the selective activity of myristic acid varies with the additives. The present findings are useful for designing formulations of cosmetics and body cleansers containing myristic acid.


Cosmetics/chemistry , Cosmetics/pharmacology , Myristic Acid/pharmacology , Staphylococcus aureus/drug effects , Drug Interactions , Drug Resistance, Bacterial , Fatty Acids, Monounsaturated/pharmacology , Lauric Acids/pharmacology , Staphylococcus epidermidis/drug effects
14.
Microb Pathog ; 158: 105079, 2021 Sep.
Article En | MEDLINE | ID: mdl-34245824

Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.


Brucellosis , Lauric Acids/pharmacology , Receptors, G-Protein-Coupled/agonists , Uracil/analogs & derivatives , Animals , Brucella abortus , Cattle , Humans , Mice , RAW 264.7 Cells , Uracil/pharmacology
15.
Physiol Rep ; 9(4): e14480, 2021 02.
Article En | MEDLINE | ID: mdl-33625776

Oxylipins are metabolites of polyunsaturated fatty acids that mediate cardiovascular health by attenuation of inflammation, vascular tone, hemostasis, and thrombosis. Very low-density lipoproteins (VLDL) contain oxylipins, but it is unknown whether the liver regulates their concentrations. In this study, we used a perfused liver model to observe the effect of inflammatory lipopolysaccharide (LPS) challenge and soluble epoxide hydrolase inhibition (sEHi) on VLDL oxylipins. A compartmental model of deuterium-labeled linoleic acid and palmitic acid incorporation into VLDL was also developed to assess the dependence of VLDL oxylipins on fatty acid incorporation rates. LPS decreased the total fatty acid VLDL content by 30% [6%,47%], and decreased final concentration of several oxylipins by a similar amount (13-HOTrE, 35% [4%,55%], -1.3 nM; 9(10)-EpODE, 29% [3%,49%], -2.0 nM; 15(16)-EpODE, 29% [2%,49%], -1.6 nM; AA-derived diols, 32% [5%,52%], -2.4 nM; 19(20)-DiHDPA, 31% [7%,50%], -1.0 nM). However, the EPA-derived epoxide, 17(18)-EpETE, was decreased by 75% [49%,88%], (-0.52 nM) with LPS, double the suppression of other oxylipins. sEHi increased final concentration of DHA epoxide, 16(17)-EpDPE, by 99% [35%,193%], (2.0 nM). Final VLDL-oxylipin concentrations with LPS treatment were not correlated with linoleic acid kinetics, suggesting they were independently regulated under inflammatory conditions. We conclude that the liver regulates oxylipin incorporation into VLDL, and the oxylipin content is altered by LPS challenge and by inhibition of the epoxide hydrolase pathway. This provides evidence for delivery of systemic oxylipin signals by VLDL transport.


Adamantane/analogs & derivatives , Chemical and Drug Induced Liver Injury/enzymology , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Lauric Acids/pharmacology , Lipoproteins, VLDL/metabolism , Liver/drug effects , Oxylipins/metabolism , Adamantane/pharmacology , Animals , Chemical and Drug Induced Liver Injury/etiology , Epoxide Hydrolases/metabolism , In Vitro Techniques , Kinetics , Linoleic Acid/metabolism , Lipopolysaccharides/toxicity , Liver/enzymology , Male , Palmitic Acid/metabolism , Perfusion , Rats, Sprague-Dawley
16.
Sci Rep ; 11(1): 177, 2021 01 08.
Article En | MEDLINE | ID: mdl-33420288

Infections caused by Staphylococcus aureus are a serious global threat, and with the emergence of antibiotic resistance, even more difficult to treat. One of the possible complications in antistaphylococcal therapy represents negative interactions of antibiotics with food. In this study, the in vitro interaction between oxacillin and crude palm seed oil from Astrocaryum vulgare, Cocos nucifera, and Elaeis guineensis against nine strains of S. aureus was determined using the checkerboard method. Lauric acid was identified as a major constituent of all tested oils by gas chromatography. The results showed strong concentration dependent antagonistic interactions between palm oils and oxacillin with values of fractional inhibitory concentrations indices ranging from 4.02 to 8.56 at concentrations equal or higher than 1024 µg/mL of the tested oils. Similarly, lauric acid in combination with oxacillin produced antagonistic action with fractional inhibitory concentration indices ranging from 4.01 to 4.28 at 1024 µg/mL. These findings suggest that interference between oxacillin and palm oils and their constituents can negatively affect the treatment of staphylococcal infections in humans and other animals.


Anti-Bacterial Agents/pharmacology , Lauric Acids/pharmacology , Oxacillin/antagonists & inhibitors , Oxacillin/pharmacology , Petroleum/analysis , Staphylococcus aureus/drug effects , Dose-Response Relationship, Drug , Drug Antagonism , Microbial Sensitivity Tests , Oxacillin/analogs & derivatives
17.
J Microbiol Biotechnol ; 31(1): 130-136, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33046677

Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.


Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Escherichia coli/drug effects , Fatty Acids/pharmacology , Lauric Acids/pharmacology , Bacterial Infections , Drug Tolerance
18.
Curr Drug Discov Technol ; 18(4): 532-541, 2021.
Article En | MEDLINE | ID: mdl-32652913

BACKGROUND: Streptococcus mutans and Streptococcus sanguinis are Gram-positive bacteria that cause dental caries. MurA enzyme acts as a catalyst in the formation of peptidoglycan in bacterial cell walls, making it ideal as an antibacterial target. Basil (Ocimum americanum) is an edible plant that is diverse and has been used as a herbal medicine for a long time. It has been reported that basil has a pharmacological effect as well as antibacterial activity. The purpose of this study was to identify antibacterial compounds in O. americanum and analyze their inhibition activity on MurA enzyme. METHODS: Fresh leaves from O. americanum were extracted with n-hexane and purified by a combination of column chromatography on normal and reverse phases together with in vitro bioactivity assay against S. mutans ATCC 25175 and S. sanguinis ATCC 10556, respectively, while in silico molecular docking simulation of lauric acid (1) was conducted using PyRx 0.8. RESULTS: The structure determination of antibacterial compound by spectroscopic methods resulted in an active compound lauric acid (1). The in vitro evaluation of antibacterial activity in compound 1 showed Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of 78.13 and 156.3 ppm and 1250 and 2500 ppm against S. sanguinis and S. mutans, respectively. Further analysis and in silico evaluation determined lauric acid (1) as MurA Enzyme inhibitor. Lauric acid (1) showed a binding affinity of -5.2 Kcal/mol, which was higher than fosfomycin. CONCLUSION: Lauric acid showed the potential as a new natural antibacterial agent through MurA inhibition in bacterial cell wall biosynthesis.


Anti-Bacterial Agents/pharmacology , Dental Caries/drug therapy , Lauric Acids/pharmacology , Ocimum basilicum/chemistry , Alkyl and Aryl Transferases/antagonists & inhibitors , Alkyl and Aryl Transferases/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/therapeutic use , Dental Caries/microbiology , Humans , Lauric Acids/isolation & purification , Lauric Acids/therapeutic use , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Leaves/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/enzymology , Streptococcus sanguis/drug effects , Streptococcus sanguis/enzymology
19.
Life Sci ; 265: 118750, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33188836

BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats. METHOD: Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC). RESULTS: The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues. CONCLUSION: These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.


Inflammation/drug therapy , Lauric Acids/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lauric Acids/metabolism , Lipopolysaccharides/pharmacology , Liver/immunology , Liver/metabolism , Liver/pathology , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Mol Biol Rep ; 47(12): 9595-9607, 2020 Dec.
Article En | MEDLINE | ID: mdl-33259010

Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 µM, 10 µM, 20 µM, and 50 µM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.


Glucose/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Lauric Acids/pharmacology , Macrophages/drug effects , Mitochondria/drug effects , Adenosine Triphosphate/biosynthesis , Biological Transport/drug effects , Cell Differentiation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Humans , Insulin Resistance , Macrophages/cytology , Macrophages/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Organelle Biogenesis , PPAR gamma/genetics , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
...